Bits of Reality
Science News (04/07/12) Vol. 181, No. 7, P. 26 Tom Siegfried
Information derived from quantum computing systems could reveal subtle insights about the intersection between mathematics and the physical world. "We hope to be able to verify that these extraordinary computational resources in quantum systems really are part of the way nature behaves," says California Institute of Technology physicist John Preskill. "We could do so by solving a problem that we think is hard classically ... with a quantum computer, where we can easily verify with a classical computer that the quantum computer got the right answer." To solve certain hard problems that standard supercomputers cannot accommodate, such as finding the prime factors of very large numbers, quantum computers must process bits of quantum information. Quantum machines would only be workable for problems that could be posed as an algorithm amenable to the way quantum weirdness can eliminate wrong answers, allowing only the right answer to prevail. In 2011, the Perimeter Institute for Theoretical Physics' Giulio Chiribella and colleagues demonstrated how to derive quantum mechanics from a set of five axioms plus one postulate, all rooted in information theory terms. The foundation of their system is axioms such as causality, the notion that signals from the future cannot impact the present.
Science News (04/07/12) Vol. 181, No. 7, P. 26 Tom Siegfried
Information derived from quantum computing systems could reveal subtle insights about the intersection between mathematics and the physical world. "We hope to be able to verify that these extraordinary computational resources in quantum systems really are part of the way nature behaves," says California Institute of Technology physicist John Preskill. "We could do so by solving a problem that we think is hard classically ... with a quantum computer, where we can easily verify with a classical computer that the quantum computer got the right answer." To solve certain hard problems that standard supercomputers cannot accommodate, such as finding the prime factors of very large numbers, quantum computers must process bits of quantum information. Quantum machines would only be workable for problems that could be posed as an algorithm amenable to the way quantum weirdness can eliminate wrong answers, allowing only the right answer to prevail. In 2011, the Perimeter Institute for Theoretical Physics' Giulio Chiribella and colleagues demonstrated how to derive quantum mechanics from a set of five axioms plus one postulate, all rooted in information theory terms. The foundation of their system is axioms such as causality, the notion that signals from the future cannot impact the present.
No comments:
Post a Comment