More Chip Cores Can Mean Slower Supercomputing, Sandia Simulation Shows
Sandia National Laboratories (01/13/09) Singer, Neal
Simulations at Sandia National Laboratory have shown that increasing the number of processor cores on individual chips may actually worsen the performance of many complex applications. The Sandia researchers simulated key algorithms for deriving knowledge from large data sets, which revealed a significant increase in speed when switching from two to four multicores, an insignificant increase from four to eight multicores, and a decrease in speed when using more than eight multicores. The researchers found that 16 multicores were barely able to perform as well as two multicores, and using more than 16 multicores caused a sharp decline as additional cores were added. The drop in performance is caused by a lack of memory bandwidth and a contention between processors over the memory bus available to each processor. The lack of immediate access to individualized memory caches slows the process down once the number of cores exceeds eight, according to the simulation of high-performance computing by Sandia researchers Richard Murphy, Arun Rodrigues, and Megan Vance. "The bottleneck now is getting the data off the chip to or from memory or the network," Rodrigues says. The challenge of boosting chip performance while limiting power consumption and excessive heat continues to vex researchers. Sandia and Oak Ridge National Laboratory researchers are attempting to solve the problem using message-passage programs. Their joint effort, the Institute for Advanced Architectures, is working toward exaflop computing and may help solve the multichip problem.
Tuesday, January 13, 2009
Blog: More Chip Cores Can Mean Slower Supercomputing, Sandia Simulation Shows
Labels:
CSE,
development,
hardware,
performance
Subscribe to:
Post Comments (Atom)
Blog Archive
-
►
2012
(35)
- ► April 2012 (13)
- ► March 2012 (16)
- ► February 2012 (3)
- ► January 2012 (3)
-
►
2011
(118)
- ► December 2011 (9)
- ► November 2011 (11)
- ► October 2011 (7)
- ► September 2011 (13)
- ► August 2011 (7)
- ► April 2011 (8)
- ► March 2011 (11)
- ► February 2011 (12)
- ► January 2011 (15)
-
►
2010
(183)
- ► December 2010 (16)
- ► November 2010 (15)
- ► October 2010 (15)
- ► September 2010 (25)
- ► August 2010 (19)
- ► April 2010 (21)
- ► March 2010 (7)
- ► February 2010 (6)
- ► January 2010 (6)
-
▼
2009
(120)
- ► December 2009 (5)
- ► November 2009 (12)
- ► October 2009 (2)
- ► September 2009 (3)
- ► August 2009 (16)
- ► April 2009 (4)
- ► March 2009 (20)
- ► February 2009 (9)
-
▼
January 2009
(19)
- Blog: Microsoft Releases 'Web Sandbox' as Open Source
- Blog: Weizmann Institute Scientists Create Working...
- Blog: Many Task Computing [MTC]: Bridging the Perf...
- Blog: Game Provides Clue to Improving Remote Sensing
- Blog: New Insight Into How Bees See
- Blog: Fighting Malware: An Interview With Paul Fer...
- Blog: SANS Real-time Adaptive Security White Paper
- Blog: Hot New Memory; computer circuits based on q...
- Blog: How One Company Cleaned Up The Thumb Drive A...
- Blog: How We Are Tricked Into Giving Away Our Pers...
- Blog: NIST Draft Publication Offers Guidelines for...
- Blog: More Chip Cores Can Mean Slower Supercomputi...
- Blog: Ruby on Rails on Track for Major Upgrades
- Blog: Group Details 25 Most Dangerous Coding Error...
- Blog: Billion-Point Computing for Computers
- Blog: What Will Change Everything? Ask a Computer ...
- Blog: MD5 Hash Algorithm Flaw Allows Fraudulent Ce...
- Blog: MIT Professor Creates Software to Organize t...
- Blog: Web 3.0 Emerging
-
►
2008
(139)
- ► December 2008 (15)
- ► November 2008 (16)
- ► October 2008 (17)
- ► September 2008 (2)
- ► August 2008 (2)
- ► April 2008 (12)
- ► March 2008 (25)
- ► February 2008 (16)
- ► January 2008 (6)
-
►
2007
(17)
- ► December 2007 (4)
- ► November 2007 (4)
- ► October 2007 (7)
Blog Labels
- research
- CSE
- security
- software
- web
- AI
- development
- hardware
- algorithm
- hackers
- medical
- machine learning
- robotics
- data-mining
- semantic web
- quantum computing
- Cloud computing
- cryptography
- network
- EMR
- search
- NP-complete
- linguistics
- complexity
- data clustering
- optimization
- parallel
- performance
- social network
- HIPAA
- accessibility
- biometrics
- connectionist
- cyber security
- passwords
- voting
- XML
- biological computing
- neural network
- user interface
- DNS
- access control
- firewall
- graph theory
- grid computing
- identity theft
- project management
- role-based
- HTML5
- NLP
- NoSQL
- Python
- cell phone
- database
- java
- open-source
- spam
- GENI
- Javascript
- SQL-Injection
- Wikipedia
- agile
- analog computing
- archives
- biological
- bots
- cellular automata
- computer tips
- crowdsourcing
- e-book
- equilibrium
- game theory
- genetic algorithm
- green tech
- mobile
- nonlinear
- p
- phone
- prediction
- privacy
- self-book publishing
- simulation
- testing
- virtual server
- visualization
- wireless
No comments:
Post a Comment